

DEGENERATE SEMILINEAR ELLIPTIC PROBLEMS NEAR RESONANCE AT HIGHER EIGENVALUES

Yu-Cheng An and Hong-Min Suo

Received January 3, 2013; Revised May 8, 2013

Abstract

In this paper, we consider the degenerate elliptic equation of the form

$$\begin{cases} -div(a(x)\nabla u) = \lambda u + f(x, u) + h(x), & x \in \Omega, \\ u = 0, & x \in \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^{N} (N \ge 2)$ is an open bounded domain with smooth boundary $\partial \Omega$, $h \in L^{2}(\Omega)$, *a* is a measurable, nonnegative weight function on Ω and $a \in L^{1}_{loc}(\Omega)$. Using the minimax methods in critical point theory and a generalized Landesman-Lazer type condition, we prove that the problem has at least two solutions for λ near to an eigenvalue of *L* without the coercive assumption on the nonlinearity *f* or its primitive function. (where $Lu = -div(a(x)\nabla u)$).

Keywords and phrases: degenerate equations, multiplicity of solutions, Landesman-Lazer type condition, near resonance, saddle point geometry.

ISSN: 2230-9829

Pioneer Journal of Mathematics and Mathematical Sciences

