# DEGENERATE SEMILINEAR ELLIPTIC PROBLEMS NEAR RESONANCE AT HIGHER EIGENVALUES 

Yu-Cheng An and Hong-Min Suo
Received January 3, 2013; Revised May 8, 2013

## Abstract

In this paper, we consider the degenerate elliptic equation of the form

$$
\begin{cases}-\operatorname{div}(a(x) \nabla u)=\lambda u+f(x, u)+h(x), & x \in \Omega, \\ u=0, & x \in \partial \Omega,\end{cases}
$$

where $\Omega \subset R^{N}(N \geq 2)$ is an open bounded domain with smooth boundary $\partial \Omega$, $h \in L^{2}(\Omega), a$ is a measurable, nonnegative weight function on $\Omega$ and $a \in L_{l o c}^{1}(\Omega)$.
Using the minimax methods in critical point theory and a generalized LandesmanLazer type condition, we prove that the problem has at least two solutions for $\lambda$ near to an eigenvalue of $L$ without the coercive assumption on the nonlinearity $f$ or its primitive function. (where $L u=-\operatorname{div}(a(x) \nabla u)$ ).

Keywords and phrases: degenerate equations, multiplicity of solutions, Landesman-Lazer type condition, near resonance, saddle point geometry.
$P=P \quad \begin{gathered}\text { Pioneer Scientific } \\ \text { Publisher }\end{gathered}$

